

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/groove-basin/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/groove-basin/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Groove Basin Protocol Specification

Version 0.0.1, published on 2015-08-18.

Note: The Groove Basin protocol is not stable yet. When a version of
Groove Basin is released which stabilizes the protocol, the major version will
be bumped to 1.0.0. Until then, a minor version bump may break compatibility
with older clients.

In effort to make upgrading easier, when compatibility is broken (even before
1.0.0), this document will provide version history with
instructions for updating to the new protocol version.

Other music players are invited to implement and extend the Groove Basin
protocol. In order to make this practical, metadata is available which
describes what messages are available to send and what information is available
to retrieve. Using this, a client could simultaneously support music players
with fewer features and music players with more features than Groove Basin.


	Overview
	Establishing a Connection

	Authentication

	Generating UUIDs





	Client-to-Server Control Messages
	approve

	chat

	deleteTracks

	deleteUsers

	autoDjOn

	autoDjHistorySize

	autoDjFutureSize

	ensureAdminUser

	hardwarePlayback

	importNames

	importUrl

	login

	logout

	subscribe

	updateTags

	updateUser

	unsubscribe

	move

	pause

	play

	queue

	seek

	setStreaming

	remove

	repeat

	requestApproval

	setVolume

	stop

	playlistCreate

	playlistRename

	playlistDelete

	playlistAddItems

	playlistRemoveItems

	playlistMoveItems

	labelCreate

	labelRename

	labelColorUpdate

	labelDelete

	labelAdd

	labelRemove

	lastFmGetSession

	lastFmScrobblersAdd

	lastFmScrobblersRemove





	Server-to-Client Control Messages
	error

	seek

	time

	token

	lastFmApiKey

	lastFmGetSessionSuccess

	lastFmGetSessionError

	user





	Subscribed Information Change Messages
	currentTrack

	autoDjOn

	autoDjHistorySize

	autoDjFutureSize

	repeat

	volume

	queue

	hardwarePlayback

	library

	libraryQueue

	scanning

	playlists

	importProgress

	anonStreamers

	haveAdminUser

	users

	streamEndpoint

	protocolMetadata

	events
	chat

	queue

	currentTrack

	autoPause

	streamStart

	streamStop

	connect

	part

	register

	login

	move

	pause

	play

	stop

	seek

	playlistRename

	playlistDelete

	playlistCreate

	playlistAddItems

	playlistRemoveItems

	playlistMoveItems

	clearQueue

	remove

	shuffle

	import

	labelCreate

	labelRename

	labelColorUpdate

	labelDelete

	labelAdd

	labelRemove









	Client-to-Server HTTP Messages
	GET /library/

	GET /library/[folder]/

	GET /library/[songFilePath]

	GET /download/keys

	GET /[streamEndpoint]

	POST /upload





	Version History
	0.0.1








Overview

The Groove Basin Protocol allows you to do these things:


	Authenticate or remain as a guest.

	Obtain information about the music library, playlists, settings, chat, and
play queue.

	Control playback.

	Update the music library, playlists, chat, and settings.

	Import new music.

	Download music.

	Connect to the music stream.



Groove Basin itself serves as an example implementation of the Groove Basin
Protocol. It contains both a client and a server.

Additionally, there is gbremote [https://github.com/andrewrk/gbremote], a
simple Node.js module and command line client demonstrating how to use the
Groove Basin Protocol.


Establishing a Connection

The Groove Basin protocol operates within the HTTP protocol. Ideally, the
admin has configured the server to use HTTPS, either by using config options to
enable SSL and set a certificate, or by using
a proxy such as nginx [https://github.com/andrewrk/groovebasin/wiki/Proxying-Groove-Basin-via-nginx].

After establishing an HTTP connection, establish a WebSocket connection. This
WebSocket connection is referred to as the control connection in this
document.

The control connection is JSON-formatted and newline-delimited. Each message
is formatted like this:

{"name": "messageName", "args": messageArguments}





Depending on the message, messageArguments might be any of the JSON types:
string, number, object, array, boolean, or null.

object types are described like this:


	Type: {fieldOne, fieldTwo, fieldThree}

	fieldOne: description of field one

	fieldTwo: description of field two

	fieldThree: description of field three



array types are described like this:


	Type: [fieldName]

	fieldName: description of field



Datetimes are always communicated as a string, in simplified extended ISO
format (ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601]), which is always 24
characters long: YYYY-MM-DDTHH:mm:ss.sssZ. The timezone is always zero UTC
offset, as denoted by the suffix “Z”.

After establishing a WebSocket connection, the next thing you probably want to
do is subscribe to information relevant to you.




Authentication

Groove Basin has the following permissions:


	read - Read-access to everything.

	add - Import new songs to library.

	control - Control playback and the queue.

	playlist - Create, update, and delete playlists.

	admin - Delete songs, update tags, modify global settings, modify users.



By default, guests have only these permissions:


	read

	add

	control



In this document, each message that the client can send to the server has a
required permission associated with it. If the client does not have this
permission, the message is ignored and the server sends a message like this:

{"name": "error", "args": "command \"play\" requires permission \"control\""}





When a client first connects to the server, the client has guest permissions
and is assigned a guest name such as “Guest-BPJLuPAf”.

To authenticate as a user and possibly gain more permissions, send a
login message.

See also logout message.




Generating UUIDs

Sometimes it is the client’s job to generate a random UUID. To do this,

Generate 24 bytes of random data and then base64 encode it to a 32-byte string.
Instead of / and +, clients must use _ and - as these symbols are safe
to be put in an HTML id attribute without being escaped.

The server must reject messages which violate this constraint.






Client-to-Server Control Messages


approve


	Permission: admin

	Type: [{id, replaceId, approved, name}]

	id: string. The id of the user requesting to be approved.

	replaceId: string or null. If you want to delete the original user
and merge them into another user, put that user id here. Otherwise use null
to approve as a new user.

	approved: boolean. true to approve, false to reject.

	name: string. The user’s name is replaced with this one.



Accept or reject a user’s request for account validation. This is in lieu of,
for example, an account confirmation email.




chat


	Permission: control

	Type: {text, displayClass}

	text: string. The chat message to send.

	displayClass: string or null. Use the string “me” to indicate that this
chat message is in the third person, for example when the user types:
/me hides behind the desk. Otherwise, use null.



Sends a chat message.




deleteTracks


	Permission: admin

	Type: [key]

	key: The ID of the song you wish to delete.



Deletes multiple tracks at once.




deleteUsers


	Permission: admin

	Type: [id]

	id: The ID of the user you wish to delete.






autoDjOn


	Permission: control

	Type: boolean.






autoDjHistorySize


	Permission: control

	Type: number.



Change the number of items in the playlist before the current song which are
not deleted by Auto DJ.




autoDjFutureSize


	Permission: control

	Type: number.



Change the number of items in the playlist after the current song which are
selected randomly by Auto DJ.




ensureAdminUser


	Permission: none

	Type: none



If there is no admin user, this action creates one and prints the credentials
to the server’s stdio.




hardwarePlayback


	Permission: admin

	Type: boolean



Turn on or off the server sending audio to speakers.




importNames


	Permission: add

	Type: {names: [query], autoQueue}

	names: array. Array of names to import.
	query: Search query used to find song. Example: “Tristam - I Remember”.





	autoQueue: boolean. true to automatically queue the imported songs
in the play queue; false otherwise.



When the client sends this message, it is the server’s job to locate the songs
somehow based on the queries given, and then download or otherwise import them
into the music library.

Some servers may not be able to implement this message and clients are advised
to check for its existence before using it using the protocolMetadata
information.

Groove Basin uses the query to search YouTube and download the first HD result.

This message is likely to be updated before the protocol reaches 1.0.0.




importUrl


	Permission: add

	Type: {url, autoQueue}

	url: string. The Uniform Resource Locator to attempt to import.

	autoQueue: boolean. true to automatically queue the imported songs
in the play queue; false otherwise.



When the client sends this message, it is the server’s job to interpret the
supplied URL as describing song(s) that can be imported and then import them
into the library.

Groove Basin does the following:


	If it is a YouTube URL, download the highest quality video from YouTube.

	Download the URL to disk and then act as though the user used the
POST /upload HTTP message and uploaded the resulting file.



This message is likely to be updated before the protocol reaches 1.0.0.




login


	Permission: none

	Type: {username, password}

	username: string

	password: string



After logging in, the server sends a user message containing the
user and permissions that the connection is associated with.

See also logout




logout


	Permission: none

	Type: none



See also login




subscribe


	Permission: read

	Type: {name, delta, version}

	name: string. The name of the information you want to subscribe to. See
Subscribed Information Change Messages
for a list of available information. You can also query the server for the
available information names by subscribing to the protocolMetadata information.

	delta: boolean. true if you want to receive object diffs; false if
you want to receive simple data. See
Subscribed Information Change Messages
for detailed description. Defaults to false.

	version: string. Only used for delta subscription mode. Supply the
version hash of the information that you have cached and the server will
not send information if it has not changed. Defaults to null.



subscribe is the only way to get information from the server. Instead of
querying information, the client subscribes to it so that the client will
always have up to date information.

After subscribing, the server will send the information immediately
(except in delta mode and version hash matches) and then again whenever the
information is updated.

Information is guaranteed to be sent in the order the client subscribes. For
example, if the client subscribes to library and then subscribes to
queue, the library information is sent first followed by the queue
information.

See also unsubscribe.




updateTags


	Permission: admin

	Type: {songId: {propName: propValue}}

	songId: string. The song ID to update tags for.

	propName: string. Tag name. One of the following. See library
for details.
	name

	artistName

	albumArtistName

	albumName

	compilation

	track

	trackCount

	disc

	discCount

	year

	genre

	composerName

	performerName







Note this message allows editing tags for multiple songs at once.




updateUser


	Permission: admin

	Type: {userId, perms}

	userId: string. ID of the user to update.

	perms: object. Permissions to assign to the user.






unsubscribe


	Permission: none

	Type: string.



See also subscribe




move


	Permission: control

	Type: {itemId: {sortKey}}

	itemId: string. ID of the playlist item to move.

	sortKey: string. Describes the new position of the playlist item.



Moving play queue items by updating their sort key values. Use the
keese [https://github.com/thejoshwolfe/node-keese] algorithm to compute the
desired sort keys.




pause


	Permission: control

	Type: none






play


	Permission: control

	Type: none






queue


	Permission: control

	Type: {itemId: {key, sortKey}}

	itemId: string. Randomly generated UUID to identify
the new queue item.

	key: string. ID of the song this queue item is for.

	sortKey:string. keese [https://github.com/thejoshwolfe/node-keese]
value used to determine the position of the queue item.






seek


	Permission: control

	Type: {id, pos}

	id: string. ID of the play queue item to play.

	pos: number. Position in seconds into the song to start playing.






setStreaming


	Permission: none

	Type: boolean. true if streaming; false otherwise.



Clients should set this to true when the user indicates that they wish to
stream and they should set this to false when the user indicates that they
no longer wish to stream (in addition to closing the connection to the stream
endpoint).




remove


	Permission: control

	Type: [id]

	id: string. ID of the play queue item to remove.






repeat


	Permission: control

	Type: number. Desired repeat state enum value.



Repeat states:


	Repeat Off: 0

	Repeat All: 1

	Repeat One: 2






requestApproval


	Permission: none

	Type: none



Ask the admin to approve of the connected user’s account. In order for a user
to have permissions beyond guest permissions, the user must be approved.




setVolume


	Permission: control

	Type: number. Desired floating point volume between 0.0 and 2.0. Volumes
above 1.0 risk lowering the audio quality.






stop


	Permission: control

	Type: none






playlistCreate


	Permission: playlist

	Type: {id, name}

	id: string. Randomly generated UUID to identify
the new playlist.

	name: string.






playlistRename


	Permission: playlist

	Type: {id, name}

	id: string. The ID of the playlist to rename.

	name: string. New name of the playlist.






playlistDelete


	Permission: playlist

	Type: [id]

	id: ID of a playlist to delete.



Delete any number of playlists.




playlistAddItems


	Permission: playlist

	Type: {id, items: {itemId: {key, sortKey}}}

	id: string. ID of the playlist to add items to.

	items: object
	itemId: string. Randomly generated UUID to identify
the new playlist item.

	key: string. ID of the song this playlist item is associated with.

	sortKey: string. keese [https://github.com/thejoshwolfe/node-keese]
value used to order the playlist item in the playlist.










playlistRemoveItems


	Permission: playlist

	Type: {playlistId: [itemId]}

	playlistId: string. ID of a playlist to remove items from.

	itemId: string. ID of a playlist item to remove.






playlistMoveItems


	Permission: playlist

	Type: {playlistId: {itemId: {sortKey}}}

	playlistId: string. ID of a playlist to move items in.

	itemId: string. Id of a playlist item to move.

	sortKey: string. New keese [https://github.com/thejoshwolfe/node-keese]
value used to order the playlist item in the playlist.






labelCreate


	Permission: playlist

	Type: {id, name}

	id: string. Randomly generated UUID to identify the
new label.

	name: string.






labelRename


	Permission: playlist

	Type: {id, name}

	id: string. ID of the label to rename.

	name: string. New name.






labelColorUpdate


	Permission: playlist

	Type: {id, color}

	id: string. ID of the label to rename.

	color: string. New color.






labelDelete


	Permission: playlist

	Type: [id]

	id: string. A label ID to delete.






labelAdd


	Permission: playlist

	Type: {songId: [labelId]}

	songId: string. ID of the song to add labels to.

	labelId: string. ID of a label to add to the song.






labelRemove


	Permission: playlist

	Type: {songId: [labelId]}

	songId: string. ID of the song to remove labels from.

	labelId: string. ID of a label to remove from the song.






lastFmGetSession


	Permission: read

	Type: string. Last.fm token.



This message is a holdover from older times before user accounts were
implemented and this functionality is likely to be changed before the
protocol reaches 1.0.0.




lastFmScrobblersAdd


	Permission: read

	Type: {username, sessionKey}

	username: string. Last.fm username.

	sessionKey: string. Last.fm session key.



This message is a holdover from older times before user accounts were
implemented and this functionality is likely to be changed before the
protocol reaches 1.0.0.




lastFmScrobblersRemove


	Permission: read

	Type: {username, sessionKey}

	username: string. Last.fm username.

	sessionKey: string. Last.fm session key.



This message is a holdover from older times before user accounts were
implemented and this functionality is likely to be changed before the
protocol reaches 1.0.0.






Server-to-Client Control Messages


error


	Type: string. Error message.



When something goes wrong the server sends this message. Currently there is no
way to associate an error message as originating from a specific client message.

This is something that is under consideration for changing before the protocol
hits 1.0.0.




seek

No arguments. Sent when the current song or current song position changes. If
the client is streaming, they should clear their buffer and ask for a fresh
stream.




time


	Type: string. Current datetime according to the server.



Sent on first connection, when the system time changes, and periodically
to combat clock drift. Pause time and playback start time are relative to this
time.

The client does not subscribe to get this information because the
value is constantly changing.




token


	Type: string. Identifies the connection session.



Sent on first connection. HTTP requests may use this token to act on behalf of
this control connection.




lastFmApiKey


	Type: string



Sent on first connection. Supplies the client with the Last.fm API key of the
server which the client could use to implement client-side authentication and
then set up server scrobbling.

This message is a holdover from older times before user accounts were
implemented and this functionality is likely to be changed before the
protocol reaches 1.0.0.




lastFmGetSessionSuccess


	Type: {session: {username, sessionKey}}

	session: Always the string “session”.

	username: Last.fm username

	sessionKey: Last.fm session key



This message is a holdover from older times before user accounts were
implemented and this functionality is likely to be changed before the
protocol reaches 1.0.0.




lastFmGetSessionError


	Type: string. Last.fm error message.



This message is a holdover from older times before user accounts were
implemented and this functionality is likely to be changed before the
protocol reaches 1.0.0.




user


	Type: {id, name, perms, registered, requested, approved}

	id: string. User ID of the connection.

	name: string. User name of the connection.

	perms: object. permissions the connection currently has.

	registered: boolean. Whether or not the user registered.

	requested: boolean. Whether or not the user requested approval.

	approved: boolean. Whether or not the user was approved.



Example perms:

{"add": true, "control": true}










Subscribed Information Change Messages

When you subscribe to information, you receive a message
immediately and then any time that information changes.

If you subscribed simply, then a subscribed information change
message looks like this:

{"name": subscriptionName, "args": newValue}





In simple subscription mode, newValue is the new information, and you receive
all the information every time it changes.

If you subscribed with delta: true, then a subscribed information change
message looks like this:

{
  "name": subscriptionName,
  "args": {
    "version": versionHash,
    "reset": false,
    "delta": newValueDelta
  }
}





Note that the newlines here are for document readability and in Groove Basin
protocol, there is always one JSON message per line.

With delta subscription, every time information changes, you are given a delta
object in curlydiff [https://github.com/thejoshwolfe/curlydiff] format along
with a version hash. If you disconnect from the server and reconnect later,
you supply the version hash when subscribing. If your version hash matches the
server, the server sends no data (until the data changes next time), since the
client’s cached data is correct.

If reset is true, then the client must first invalidate its cache by
setting it to undefined.

It is recommended that you use delta subscription mode for the library, since
the library metadata can be large and change often.

Currently all information is available regardless of permissions. This is
something that will likely change before the protocol reaches 1.0.0.


currentTrack


	Type: {currentItemId, isPlaying, trackStartDate, pausedTime}

	currentItemId: string or null. The play queue ID currently playing.

	isPlaying: boolean. true if playing; false if paused.

	trackStartDate: string. datetime representing what time it was on the
server when frame 0 of the current song was played.

	pausedTime: number. Only relevant when isPlaying is false. How many
seconds into the song the position is.






autoDjOn


	Type: boolean. true if Auto DJ is on; false if Auto DJ is off.






autoDjHistorySize


	Type: number. When Auto DJ is on, this is the number of songs in the play
queue before the current song that are not automatically removed.






autoDjFutureSize


	Type: number. When Auto DJ is on, this is the number of songs in the play
queue after the current song that are chosen randomly to be played next.






repeat


	Type: number. The current repeat state.



Repeat states:


	Repeat Off: 0

	Repeat All: 1

	Repeat One: 2






volume


	Type: number. Range: 0.0 to 2.0. Values above 1.0 indicate that a limiter
may be in use, compromising audio quality integrity in order to achieve
loudness.






queue


	Type: {id: {key, sortKey, isRandom}}

	id: string. The play queue item ID.

	key: string. The ID of the song this queue item refers to.

	sortKey: string. A keese [https://github.com/thejoshwolfe/node-keese]
string indicating the order of this item in the play queue.

	isRandom: boolean. Indicates whether this queue item was queued by the
user or randomly, by Auto DJ.



To display the play queue, sort the queue items by their sortKey string.




hardwarePlayback


	Type: boolean. Whether the server has hardware playback on.






library

Type:

{
  key: {
    name,
    artistName,
    albumArtistName,
    albumName,
    compilation,
    track,
    trackCount,
    disc,
    discCount,
    duration,
    year,
    genre,
    file,
    composerName,
    performerName,
    labels: {labelId: 1},
  },
  ...
}






	key: string. ID of the song in the music library.

	file: string. Path of the song on disk relative to the music library
root.

	duration: number. How many seconds long this track is. Once the track
has been scanned for loudness, this duration value is always exactly correct.

	name: string. Track title.

	artistName: string

	albumArtistName: string

	albumName: string

	compilation: boolean

	track: number. Which track number this is.

	trackCount: number. How many total tracks there are on this album.

	disc: number. Which disc number this is.

	discCount: number. How many total discs there are in this compilation.

	year: number. What year this track was released.

	genre: string

	composerName: string

	performerName: string

	labels: object. The value is always 1.
	labelId: string. ID of a label that applies to this song.







It is strongly recommended to use the delta subscription mode with this
information.




libraryQueue

This message is the same as library, except instead of the set of
tracks returned being the entire library, it is exactly the set of tracks
relevant to the play queue. You would subscribe to this if you do not care
about the library but you do want to know what song is currently playing, for
example.

It is recommended, but not necessary, to use the delta subscription mode with
this information.




scanning


	Type: {fingerprintDone, loudnessDone}

	fingerprintDone: boolean.

	loudnessDone: boolean.



Contains the set of songs currently being scanned for loudness, duration,
fingerprint, and possibly more.

The way this works will likely be changed before protocol version 1.0.0 is
reached.




playlists


	Type: {id: {name, mtime, items: {itemId: {songId, sortKey}}}}

	id: string. Playlist ID.

	name: string.

	mtime: string. Datetime of last modification time of playlist.

	items: object. Set of playlist items.
	itemId: string. ID of the playlist item in the playlist.

	key: string. ID of the song in the music library.

	sortKey: string. keese [https://github.com/thejoshwolfe/node-keese]
string which tells the position of the item in the playlist.







To display playlist items in the correct order, sort them by sortKey.




importProgress


	Type: {id: {date, filenameHintWithoutPath, bytesWritten, size}}

	id: string. Import job ID.

	date: string.

	filenameHintWithoutPath: string.

	bytesWritten: number. How many bytes have been imported so far.

	size: number. How many bytes this file is.






anonStreamers


	Type: number. How many anonymous streamers are connected.



To count total streamers including non-anonymous streamers, subscribe to
users and check if streaming is true.




haveAdminUser


	Type: boolean. true if an admin user exists, false otherwise.



If there is no admin user, the client may send the
ensureAdminUser message to have an admin user generated
and credentials printed to stdio.




users


	Type: {userId: {name, perms, requested, approved, connected, streaming}}

	userId: string. ID of the user.

	name: string. Name of the user.

	perms: object. Permissions the user has.

	requested: boolean. Whether the user has requested approval.

	connected: boolean. Whether the user is currently connected.

	streaming: boolean. Whether the user is connected to the stream.



Before protocol version 1.0.0, this protocol message is likely to change.




streamEndpoint


	Type: string. Example: “stream.mp3”. Connect to this to listen to the
stream.






protocolMetadata


	Type: {version, actions, information, httpActions}

	version: string. Which version of the Groove Basin protocol this server
observes.

	actions: object. Which client-to-server control messages are supported.

	information: object. What information is available to subscribe to.

	httpActions: object. What client-to-server HTTP messages are supported.



Official Groove Basin server uses the version number at the top of this
document for the version field.

actions looks like:

{"deleteTracks": true, "importNames": true, ...}





information looks like:

{"currentTrack": true, "libraryQueue": true, ...}





httpActions looks like:

{"GET /library/[songFilePath]": true, "GET /download/keys": true, ...}





Servers implementing the Groove Basin protocol are welcome to add more fields
to this message in order to provide information they deem necessary for clients
to properly detect and support them.




events


	Type: {id: {date, type, sortKey, userId, text, trackId, pos, displayClass, playlistId}}

	id: string. Event ID.

	date: string. Datetime when the event occurred.

	sortKey: string. keese [https://github.com/thejoshwolfe/node-keese]
string specifying the order the events should be displayed in.

	type: string. Depending on the event type there may be more fields.
See below for details.

	userId: string. Sometimes used; see below.

	text: string. Sometimes used; see below.

	trackId: string. Sometimes used; see below.

	pos: number. Sometimes used; see below.

	displayClass: string. Sometimes used; see below.

	playlistId: string. Sometimes used; see below.

	labelId: string. Sometimes used; see below.

	subCount: number. Sometimes used; see below.



Event history.

Some of the event fields are likely to be renamed before protocol version 1.0.0.


chat


	text: the chat message.

	userId: ID of user that sent the chat message.

	displayClass: “me” if the user chatted using /me, null otherwise.



When a user sends a chat message.




queue


	userId: ID of user that queued the items.

	trackKey: If only one track, the ID of the song that was queued.

	pos: Number of queued tracks.



When a user queues tracks.




currentTrack


	userId: ID of user that queued the items.

	trackKey: If only one track, the ID of the song that was queued.

	text: “now playing text” of the track. Might be useful to still display
the event when the track is deleted from the library.



When the currently playing track changes for any reason.




autoPause

When the server automatically presses pause because nobody is listening.




streamStart


	userId: ID of the user that started streaming.



This is likely to change before protocol version 1.0.0.




streamStop


	userId: ID of the user that stopped streaming.



This is likely to change before protocol version 1.0.0.




connect


	userId: ID of the user that connected.



This is likely to change before protocol version 1.0.0.




part


	userId: ID of the user that disconnected.






register


	userId: ID of the user that registered.



Registering is the same as changing user name.

This is likely to change before protocol version 1.0.0.




login


	userId: ID of the user that logged in.






move


	userId: ID of the user that moved play queue tracks.






pause


	userId: ID of the user that pressed pause.






play


	userId: ID of the user that pressed play.






stop


	userId: ID of the user that pressed stop.






seek


	userId: ID of the user that seeked.

	trackKey: ID of the song the user seeked to.

	pos: Position in the song the user seeked to.






playlistRename


	userId: ID of the user that renamed a playlist.

	playlistId: ID of the playlist the user renamed.

	text: Old name of the playlist.






playlistDelete


	userId: ID of the user that deleted a playlist.

	playlistId: ID of the playlist the user deleted.

	text: Old name of the playlist.






playlistCreate


	userId: ID of the user that created a playlist.

	playlistId: ID of the playlist the user created.






playlistAddItems


	userId: ID of the user that added items to a playlist.

	playlistId: ID of the playlist the user added to.

	trackKey: If only one item, the ID of the song.

	pos: The number of items added to the playlist.






playlistRemoveItems


	userId: ID of the user that removed items from playlists.

	playlistId: If only one playlist, ID of the playlist the user removed from.

	trackKey: If only one item, the ID of the song.

	pos: The number of items removed from playlists.






playlistMoveItems


	userId: ID of the user that ordered items on playlists.

	playlistId: If only one playlist, ID of the playlist the user ordered items
on.

	pos: The number of items re-ordered in playlists.






clearQueue


	userId: ID of the user that cleared the play queue.






remove


	userId: ID of the user that removed items from the play queue.

	trackKey: If only one item removed, the ID of the song.

	pos: Number of items removed.

	text: If only one item removed, “now playing text” of the item. Might
be useful for if the song is later deleted from the library.






shuffle


	userId: ID of the user that shuffled the play queue.



This event will likely be removed before the protocol reaches 1.0.0, in favor
of the move event.




import


	userId: ID of the user that imported tracks.

	trackKey: If only one imported track, the ID of the song.

	pos: The number of songs imported.






labelCreate


	userId: ID of the user that created a label.

	labelId: ID of the label that was created.

	text: name of the label that was created.






labelRename


	userId: ID of the user that renamed a label.

	labelId: ID of the label that was renamed.

	text: old name of the label.






labelColorUpdate


	userId: ID of the user that changed a label’s color.

	labelId: ID of the label whose color was changed.

	text: old color of the label






labelDelete


	userId: ID of the user that deleted a label.

	labelId: ID of the label that was deleted.

	text: name of the deleted label.






labelAdd


	userId: ID of the user that added labels to songs.

	trackKey: If label added to only one track, the key of the track that
received a label.

	pos: Number of tracks that received labels.

	labelId: If only one label added to only one track, the ID of the label
that was added.

	subCount: If only one track received labels, the number of labels that
track received.






labelRemove


	userId: ID of the user that removed labels from songs.

	trackKey: If label removed from only one track, the key of the track that
had a label removed.

	pos: Number of tracks from which labels were removed.

	labelId: If only one label removed from only one track, the ID of the label
that was removed.

	subCount: If only one track had labels removed, the number of labels that
track had removed.










Client-to-Server HTTP Messages

To authenticate, first establish a control connection. In HTTP requests,
use a cookie with name token and value equal to the token received
in the control connection.


GET /library/


	Permission: read



Downloads the entire music library as a .zip file.




GET /library/[folder]/


	Permission: read



Downloads folder as a .zip file.




GET /library/[songFilePath]


	Permission: read



Downloads songFilePath. The content-disposition: attachment HTTP header
will be set.




GET /download/keys


	Permission: read



Download any number of songs by ID as a .zip file.

The query string should look like: ?key1&key2&key3




GET /[streamEndpoint]


	Permission: read



Connect to this to listen to the stream.

Don’t forget to send the setStreaming message appropriately.




POST /upload


	Permission: add



Add files to library using multipart/form-data upload.

Before each file in the multipart upload, include a form field size which
contains size of the file in bytes. This is used to provide an accurate
progress bar during the upload.

To indicate to the server that the upload should be queued automatically,
include a global form field autoQueue in the request.

Advanced servers may support uploading things like file archives and torrent
files. Groove Basin supports uploading .zip files.






Version History


0.0.1

First draft of protocol specification.









          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Welcome to Read the Docs


      


    
  

_static/ajax-loader.gif





_static/comment-close.png





_static/down-pressed.png





_static/file.png





_static/plus.png





_static/up-pressed.png





_static/down.png





_static/up.png





_static/minus.png





_static/comment.png





_static/comment-bright.png





